Union - Travail - Justice

DIRECTION DU BACCALAUREAT

BACCALAUREAT SERIE D

SCIENCES PHYSIQUES

SESSION DE JUILLET 2012 Durée : 3 Heures

Coefficient: 4

Consignes : L'épreuve de Chimie et de Physique seront présentées sur des copies différentes;

- Repérer les réponses en respectant la numérotation des questions de l'énoncé.
- Encadrer les expressions littérales et souligner les résultats numériques.
- Exprimer tout résultui numérique en respectant le nombre de chiffres significatifs de l'énancé

EPREUVE DE CHIMIE

Enoncé 1 : (5 points)

1-L'étiquette d'une bouteille d'ammoniac, porte les indications ci-après

 $-M(NH_3)=17g.mol^{-1}$

-Densité par rapport à l'eau d=0,45

-Pourcentage en masse de NH₃: P=45%

Déterminer la concentration C_o de cette solution d'ammoniac S_o.

- 2-Un technicien de laboratoire désire déterminer avec précision la concentration de So. Il dilue 1000 fois un échantillon de la solution S₀ et obtient une solution S₁ de concentration C₁. Il réalise ensuite le dosage pH-métrique d'un volume V₁=20,0mL de la solution S₁ par une solution d'acide chlorhydrique de concentration C_a=1,5.10⁻²mol.L⁻¹.
 - 2.1-Ecrire l'équation-bilan simplifiée de la réaction de dosage.
 - 2.2-A partir de la courbe qu'il a tracé (feuille annexe page 7/7), déterminer :
 - 2.2.1-Les coordonnées du point d'équivalence V_{aE} et pH_E par la méthode des tangentes, puis calculer la concentration C₁. En déduire C₀'une valeur plus précise de C₀.
 - 2.2.2-Le pKa du couple NH₄⁺/NH₃.
 - 2.3-Nommer le mélange obtenu lorsque pH=9,2.
 - 2.4-Quelles sont les propriétés de ce mélange.
 - 2.5-Sans pH-mètre il peut effectuer ce dosage à l'aide d'un indicateur coloré. Lequel choisir parmi les trois ci-dessous. Justifier ce choix.

Rouge de méthacrésol [1,2-2,8]

Rouge de méthyle [4,2-6,2]

Phénolphtaléine [8,2-10,0]

Donnée: masse volumique de l'eau a_e=1,0x10³g.L⁻¹

Page 1/7

Enoncé 2: (5 points)

Synthèse d'un ester et oxydation

On réalise la synthèse d'un ester E à partir de deux composés A et B. L'équation-bilan de la réaction d'estérification s'écrit : A+B

E+HCl (1)

- 1°) Le composé A est obtenu par action du pentachlorure de phosphore (PCl₅) sur un acide carboxylique à chaîne saturée. A contient, en masse : 13,3 % d'oxygène.
 - 1.1 A quelle famille des composés organiques appartient A? Donner son groupe fonctionnel.
 - 1.2 Vérifier que la formule brute de A est C₅H₉OCl.
 - 1.3 A possède un carbone asymétrique. Donner la formule semi-développée de A en marquant par un astérisque le carbone asymétrique.
 - 1.4 Donner la représentation spatiale de ses deux énantiomères.
- 2°) Le composé B est obtenu par hydratation d'un alcène en présence d'acide sulfurique. La masse molaire du composé B est M_B=60g.mol⁻¹.
 - 2.1 Quelle est la fonction chimique du composé B?
 - 2.2 Exprimer la masse molaire M_B de B en fonction du nombre n d'atomes de carbone qu'il contient.
 En déduire la formule brute de B.
- 3°) L'oxydation ménagée de B par les ions M_nO_4 en milieu acide donne un composé D. Les tests à la 2,4-D.N.P.H. et à la liqueur de Fehling sur D sont positifs.
 - 3.1 Donner les formules semi-développées et les noms des composés B et D.
 - 3.2 Ecrire l'équation-bilan de la réaction d'oxydation ménagée de B en D.
 - 3.3 Réécrire l'équation-bilan (1) en utilisant les formules semi-développées des composés A, B et E.
 - 3.4 Nommer l'ester E.

Données: masses molaires atomiques en g.mol⁻¹ C:12; O:16; H:1,0; Cl:35,5 MnOu/Mn²⁺

☞ EPREUVE DE PHYSIQUE

Enoncé 3 : (5 points)

ETUDE DU MOUVEMENT D'UNE PARTICULE

Un ion potassium ${}^{39}K^+$ pénètre en O avec une vitesse $\vec{V}_0 = V_0\vec{i}$ dans une zone Z de longueur L où règne : soit un champ électrique \vec{E} uniforme, soit un champ magnétique \vec{B} uniforme, soit deux champs \vec{E} et \vec{B} superposés.

On néglige le poids de l'ion devant toutes les autres forces.

Données : Vo=1,5.10⁵m.s⁻¹ ; L=10cm ; E=5,0.10⁴V.m⁻¹ ; B=0,50T L'unité de masse atomique : 1u=1,67.10⁻²⁷kg ; charge élémentaire e= 1,6.10⁻¹⁹C.

- 1- On établit dans Z le champ \vec{E} . La trajectoire d'une particule $^{39}K^+$ dans la zone Z est un arc de parabole OS_1 (voir figure 1 page 5/7) d'équation : $y=-\frac{qE}{2mv_0^2}x^2$ dans le repère $(\vec{O},\vec{i},\vec{j})$
 - 1.1) A partir de cette observation, représenter sur la figure 1 (feuille annexe page 5/7): la force électrique \vec{F}_e appliquée à l'ion en O et en M, et le champ électrique \vec{E} .
 - 1.2) Exprimer l'ordonnée du point S₁ en fonction de e, E, m, v₀ et L puis la calculer.
 - 1.3) Déterminer la déviation angulaire α que subit l'ion.
- 2- On remplace le champ électrique \vec{E} par le champ magnétique \vec{B} perpendiculaire à \vec{V}_0 . La trajectoire de la particule dans la zone Z est l'arc de cercle \widehat{OP} de rayon $R = \frac{mv_0}{|q|B}$.
 - 2.1) Représenter sur la figure 2 (feuille annexe page 5/7) la force magnétique \vec{F}_m aux points O et P, et le champ magnétique \vec{B} .
 - 2.2) L'énergie cinétique acquise par l'ion potassium est-elle :(égale, plus petite ou plus grande) en P qu'en O ? Justifier brièvement la réponse.
 - 2.3) La largeur de la zone magnétique est telle que le point P est situé à la limite de Z. Qu'elle doit être la vitesse V_0 de l'ion $^{39}K^+$ pour qu'il ressorte en P après avoir dévié d'un angle α =12°?
- 3- On suppose \vec{E} et \vec{B} agissant simultanément de manière que la trajectoire (OS) de la particule dans Z soit rectiligne (voir figure 3 feuille annexe page 5/7). Etablir la relation entre V_0 , \vec{E} et B pour satisfaire cette condition.

Enoncé 4: (5 points)

On rappelle les relations algébriques de conjugaison et de grandissement suivantes :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$
 et $\sqrt[A]{=} \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$

- 1- Un objet AB de 2,0cm de hauteur, est placé à 20,0cm d'une lentille convergente L_1 de centre optique O_1 et de distance focale $\overline{O_1F_1}=10,0$ cm. L'objet AB est perpendiculaire à l'axe principal de la lentille, A étant situé sur cet axe.
 - 1.1 -Déterminer par le calcul, la position par rapport à la lentille L₁, de l'image A₁ B₁ de l'objet AB.
 - 1.2 -Donner la nature de cette image A₁ B₁ et le grandissement n_1 de la lentille L₁.
- 2- On accole une lentille L_2 de distance focale $\overline{O_2F_2}$ à la lentille L_1 . Le système optique est assimilé à une lentille unique de vergence $C=30\delta$, de même axe et de même centre optique que L_1 .
 - 2.1 -Déterminer la distance focale de la lentille L₂.
 - 2.2 -En déduire la nature de cette lentille.
- 3- La lentille L_1 de centre optique O_1 et l'objet AB étant maintenus à leurs positions initiales, on enlève la lentille L_2 .
 - 3.1 -Construire à l'échelle indiquée (voir figure page 6/7) l'image A_1 B_1 de l'objet AB à travers la lentille L_1 .
 - 3.2 -On place la lentille L_2 de centre optique O_2 à $\overline{O_1O_2}=8$ cm.
 - 3.2.1 -A₁ B₁ est objet virtuel pour la lentille L₂. Justifier cette affirmation.
 - 3.2.2- Construire l'image A_2 B_2 de A_1 B_1 à travers la lentille L_2 .