
|     | EV             |  |  | V | $\Lambda$ | Q          | $\frown$ | N | Ι. | 104 | $\mathbf{o}$ |
|-----|----------------|--|--|---|-----------|------------|----------|---|----|-----|--------------|
| IJ, | <b>1 – 1</b> ' |  |  | W | ľΔN       | <b>6</b> 3 | U        | N | I۱ | V - | 4            |


|                                            | DEVOIDE MAIOURIN Z                        |                                                    |
|--------------------------------------------|-------------------------------------------|----------------------------------------------------|
|                                            | Formulaire :                              |                                                    |
| <ul><li>Concentration massique :</li></ul> | Facteur de dilution F, indique le nombre  | Nombre d'entités N :                               |
| m = Cm x V                                 | de fois qu'une solution doit être diluée. | $N = n \times N_A$                                 |
|                                            | $C_{initiale} = F \times C_{finale}$      | m <sub>échantillon</sub> = N x m <sub>entité</sub> |
|                                            | $V_{finale} = F x V_{initiale}$           |                                                    |

## Exercice 1 : (9,0 points)

Une ampoule de volume  $V_0 = 10 \ mL$  contient une solution de concentration en masse  $C_{m_0} =$  $3.3 \cdot 10^{-3} g \cdot L^{-1}$  de vitamine B5. Avant de pouvoir ingérer ladite solution, elle doit être diluée 20 fois.

- 1. Définie la concentration en masse.
- 2. Exprime puis calcul le volume final  $V_1$  de la solution ingérée obtenue.
- 3. Quelle est la concentration finale C<sub>1</sub> de la solution ingérée ?
- 4. Pour réaliser cette opération en laboratoire, lequel des protocoles suivants est adapté? Justifie.





5. Rédige le protocole expérimental à réaliser cette dilution au laboratoire.

## <u>Énoncé 2 :</u> (9,0 points)

On considère une des réactions de synthèse du sulfure d'aluminium par chauffage d'un mélange d'aluminium (Al) et de soufre (S) qui obéit à l'équation-bilan :  $2Al + 3S \rightarrow Al_2S_3$ 

- 1. Après un chauffage des deux réactifs que sont le soufre et l'aluminium, un groupe d'élèves obtient une quantité de matière  $n(Al_2S_3)$  de sulfure d'aluminium.
  - D'après l'équation-bilan, pour une molécule de  $Al_2S_3$  combien de molécule de soufre et d'aluminium sont nécessaire à la synthèse.
  - 1.2. Calcul la quantité de matière d'aluminium et celle de soufre nécessaire à la synthèse  $n(Al_2S_3) = 30 \ mol$  de sulfure de soufre
- 2. Un second groupe produit une masse  $m(Al_2S_3) = 120,24 g$  de sulfure d'aluminium.
  - Exprime puis calcule le nombre  $N(Al_2S_3)$  de molécules de sulfure d'aluminium présent dans une telle masse.
  - 2.2. Combien y a-t-il d'atomes de soufre et d'aluminium qui interviennent dans cette réaction de synthèse ?
  - Exprime puis calcule les masses de soufre et d'aluminium qu'il faudra mélanger pour 2.3. obtenir cette masse de sulfure d'aluminium.

## Données:

Masse (en 10<sup>-23</sup> g): m(Al)=4,49; m(S)=5,32 Constante d'Avogadro: N<sub>A</sub>=6,02x10<sup>23</sup> mol<sup>-1</sup>