

ENSEIGNANT: M. STECI MEBA

2: 062 218 163

FICHE DE TRAVAUX

Exercice 26:

Le sulfate de cuivre (CuSO₄) entre dans la composition de certains produits utilisés dans l'agriculture. C'est un solide ionique blanc sous sa forme anhydre. On souhaite préparer 100 mL d'une solution de sulfate de cuivre à 1,6 g/L.

Données :

Masse (en 10^{-26} kg): m(O)=2,66; m(S)=5,32; m(Cu)=10.6N_A=6,02x10²³ mol⁻¹

1. Quelle masse de sulfate de cuivre faut-il peser?

On a:
$$m = C_m \cdot V$$

A.N: $m = 1,6 \times 100 \cdot 10^{-3}$
 $m = 1,6 \cdot 10^{-1}$ g

Pour préparer une solution de volume V=100 mL et de concentration Cm=1,6 g/L, il faut peser une masse m=1,6·10⁻¹ g.

2. Combien cela fait-il d'entités CuSO4?

Masse m' d'une molécule de CuSO₄:

On a:
$$\mathbf{m'} = \mathbf{m}(\mathbf{Cu}) + \mathbf{m}(\mathbf{S}) + \mathbf{4} \cdot \mathbf{m}(\mathbf{0})$$

AN: $\mathbf{m'} = 10,6 + 5,32 + 4 \times 2,66$
 $\mathbf{m'} = \mathbf{26}, \mathbf{56} \cdot \mathbf{10}^{-26} \, \mathbf{kg}$

Nombre N de molécule de CuSO₄

On a:
$$N = \frac{m}{m'}$$
AN:
$$N = \frac{1,6 \cdot 10^{-4}}{26,56 \cdot 10^{-26}}$$

$$N = 6,02 \cdot 10^{20}$$

Dans une masse $m = 1.6 \cdot 10^{-1} g$, on a 6,02 · 10²⁰ molécules de sulfate de cuivre.

3. Écrire l'équation-bilan de dissolution correspondante.

$$CuSO_4$$
 \longrightarrow $Cu^{2+} + SO_4^{2-}$

- 4. D'après cette équation, combien la solution contiendra-t-elle d'ions cuivre et d'ions sulfate? d'atomes d'oxygène?
 - Nombre N(Cu²⁺) d'ions cuivre : D'après l'équation-bilan, une (01) molécule de CuSO₄ donne un (01) ion Cu²+, d'où l'égalité suivante :

$$N(Cu^{2+}) = N = 6,02 \cdot 10^{20}$$

Le nombre d'ions cuivre dans la solution est de 6,02 · 10²⁰.

Nombre $N(SO_4^{2-})$ d'ions sulfate : D'après l'équation-bilan, une (01) molécule de CuSO₄ donne un (01) ion SO₄²⁻, d'où l'égalité suivante :

$$N(SO_4^{2-}) = N = 6,02 \cdot 10^{20}$$

Le nombre d'ion sulfate dans cette solution est de 6.02 · 10²⁰.

Nombre N(O) d'atomes d'oxygène. Dans un (01) ion sulfate (SO_4^{2-}) , on compte quatre (04) atomes d'oxygène, ce qui permet d'écrire l'égalité suivante.

On a:
$$N(0) = 4 \cdot N(SO_4^{2-})$$

AN: $N(0) = 4 \times 10,0 \cdot 10^{20}$
 $N(0) = 24,0 \cdot 10^{20}$

Le nombre d'atomes d'oxygène en solution sera de 24,0 · 10²⁰.

5. Calculer les quantités de matière correspondantes.

On a:
$$\mathbf{n} = \frac{\mathrm{N}(\mathbf{C}\mathbf{u}^{2+})}{\mathbf{N}_A}$$

Quantité de matière n(SO₄²⁻):

D'où :
$$\boxed{ n(SO_4^{2-}) = \frac{N \left(SO_4^{2-} \right)}{N_A} }$$

$$n(SO_4^{2-}) = \frac{6.02 \cdot 10^{20}}{6.02 \cdot 10^{23}} = 1.00 \cdot 10^{-3} \ mol$$

Quantité de matière n(0):

D'où:
$$n(0) = \frac{N(0)}{N_A}$$
$$n(0) = \frac{24,0 \cdot 10^{20}}{6,02 \cdot 10^{23}} = 4,00 \cdot 10^{-3} \text{ mol}$$

2:062 218 163