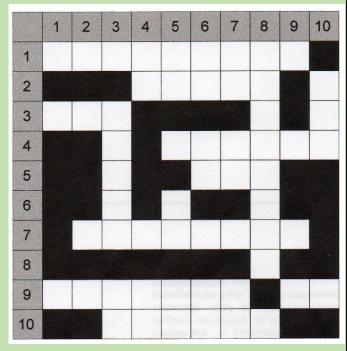


Lycée Public François MEYE (Ndjolé) Département de sciences physiques Classe de 2^{nde} S

Enseignant: M. Steci MEBA


09.11.2017	ÉVALUATION 1/3 DE SCIENCES PHYSIQUES	Durée: 01heures3
Nom(a).		

<u>Prénom(s)</u>:

Note sur 20

PARTIE CHIMIE.../10,75pts

Exercice 1: $(15 \times 0, 25pt)$

HORIZONTALEMENT

- 1. Ils gravitent autour du novau de l'atome.
- 2. La matière en est constituée. Son ordre de grandeur est de $10^{-10}m$.
- 3. C'est un anion ou un cation.
- **4.** C'est le nom des particules positives qui composent le noyau de l'atome.
- **5.** Son symbole est *Fe*.
- 7. C'est le nom des particules qui composent le noyau de
- 9. C'est le nom des entités chimiques ayant le même numéro atomique Z mais pas le même nombre de nucléons. - C'est le symbole du cobalt.
- 10. Elle est positive pour un proton et elle est négative pour un électron.

VERTICALEMENT

- 3. Il est au centre de l'atome.
- 4. C'est le symbole de l'atome de calcium.
- 5. C'est le symbole du chlore.
- 8. C'est le nom des particules contenues dans le noyau et possédant une charge électrique nulle.
- 9. C'est le symbole chimique du carbone.
- 10. Atome qui a perdu (ou gagné) un (ou plusieurs) électron(s).

<u>Exercice 2</u>: (7, 0pts)

Soi	t un atome	X dont le no	yau contient	20 neutrons	et a une charge	totale égale à	$+27,2 \times 10$	$)^{-19}C.$
1.	Détermine	er le numéro :	atomique du	noyau				

2.	Calculer le nombre de nucléons A
3.	Combien cet atome comporte-t-il d'électrons ?
4.	Représenter le symbole du noyau de l'atome X.
5.	Écrire la structure électronique de l'atome X.
6.	Nommer le groupe d'atomes dont on donne le couple (Z ;A) : (17 ;37) et (17 ;35).

•••	ectronique de l'ion.		
•••			
	Données	: charge élémen	taire $e = 1,6.10^{-19} C.$
	PA	ARTIE PHYSIQU	T ES ./10,75pt
	<u>tice 3 :</u> (5, 25 <i>pts</i>)		
On co	onsidère le montage d'un circuit élec	trique ci-dessous	:
	C		1.Nommer les branches de ce circuit
I ₁	1,0A		
¹ 1	1,0A	2,0A	2.Nommer les nœuds de ce circuit
В	·A		D
	10A J	I ₄	3. Calculer, après avoir énoncé la loi des nœuds, les valeurs des intensités I_1 , I_2 , I_3 et
	I ₂ E	I_3	I_4 . Préciser les sens du courant correspondants.
•••••			
	. 4 (4.0 4.)		
Un fil a) b)	Exprimer l'intensité I du courant é Calculer cette vitesse pour une inte $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge sont	Electrique circular ensité $I = 1, 0A$. et des électrons de $I = 1, 0A$.	ont sur ce fil en fonction de la vitesse \boldsymbol{v} des porteurs. On donne $\boldsymbol{S}=\boldsymbol{1},\boldsymbol{0mm^2}$ et un nombre de porteurs de charges électriques $q=-1.6\times 10^{-19}C$.
Un fil a)	Exprimer l'intensité I du courant é Calculer cette vitesse pour une inte $n = 6,25 \times 10^{26}$ par m^3 .	Electrique circular ensité $I = 1, 0A$. et des électrons de $I = 1, 0A$.	nt sur ce fil en fonction de la vitesse v des porteurs On donne $S = 1,0mm^2$ et un nombre de porteu
Un fil a) b)	Exprimer l'intensité I du courant é Calculer cette vitesse pour une inte $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge sont	Electrique circular ensité $I = 1,0A$. Let des électrons de by	ont sur ce fil en fonction de la vitesse \boldsymbol{v} des porteurs. On donne $\boldsymbol{S}=\boldsymbol{1},\boldsymbol{0mm^2}$ et un nombre de porteurs de charges électriques $q=-1.6\times 10^{-19}C$.
Un fil a) b)	Calculer cette vitesse pour une interpretation $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge son	Electrique circular ensité $I = 1,0A$. Let des électrons de by	ont sur ce fil en fonction de la vitesse \boldsymbol{v} des porteurs. On donne $\boldsymbol{S}=\boldsymbol{1},\boldsymbol{0mm^2}$ et un nombre de porteurs de charges électriques $q=-1.6\times 10^{-19}C$.
Un fil a) b)	Calculer cette vitesse pour une interpretation $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge son	Electrique circular ensité $I = 1,0A$. Let des électrons de by	ont sur ce fil en fonction de la vitesse \boldsymbol{v} des porteurs. On donne $\boldsymbol{S}=\boldsymbol{1},\boldsymbol{0mm^2}$ et un nombre de porteurs de charges électriques $q=-1.6\times 10^{-19}C$.
Un fil a) b)	Calculer cette vitesse pour une interpretation $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge son	Electrique circular ensité $I = 1,0A$. Let des électrons de by	ont sur ce fil en fonction de la vitesse \boldsymbol{v} des porteurs. On donne $\boldsymbol{S}=\boldsymbol{1},\boldsymbol{0mm^2}$ et un nombre de porteurs de charges électriques $q=-1.6\times 10^{-19}C$.
Un fil a) b)	Calculer cette vitesse pour une interpretation $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge son	Electrique circular ensité $I = 1,0A$. Let des électrons de by	
Un fil a) b)	Calculer cette vitesse pour une interpretation $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge son	Electrique circular ensité $I = 1,0A$. Let des électrons de by	ont sur ce fil en fonction de la vitesse \boldsymbol{v} des porteurs. On donne $\boldsymbol{S}=\boldsymbol{1},\boldsymbol{0mm^2}$ et un nombre de porteurs de charges électriques $q=-1,6\times 10^{-19}C$.
Un fil a) b)	Calculer cette vitesse pour une interpretation $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge son	Electrique circular ensité $I = 1,0A$. Let des électrons de by	ont sur ce fil en fonction de la vitesse \boldsymbol{v} des porteurs. On donne $\boldsymbol{S}=\boldsymbol{1},\boldsymbol{0mm^2}$ et un nombre de porteurs de charges électriques $q=-1,6\times 10^{-19}C$.
Un fil a) b)	Calculer cette vitesse pour une interpretation $n = 6,25 \times 10^{26}$ par m^3 . N.B: les porteurs de charge son	Electrique circular ensité $I = 1,0A$. Let des électrons de by	ont sur ce fil en fonction de la vitesse \boldsymbol{v} des porteurs. On donne $\boldsymbol{S}=\boldsymbol{1},\boldsymbol{0mm^2}$ et un nombre de porteurs de charges électriques $q=-1,6\times 10^{-19}C$.